
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 2

A Semi-Lagrangian CIP Fluid Solver
without Dimensional Splitting

Doyub Kim†1 Oh-young Song‡2 and Hyeong-Seok Ko§1

1Seoul National University, Korea
2Sejong University, Korea

Abstract
In this paper, we propose a new constrained interpolation profile (CIP) method that is stable and accurate but
requires less amount of computation compared to existing CIP-based solvers. CIP is a high-order fluid advection
solver that can reproduce rich details of fluids. It has third-order accuracy but its computation is performed over
a compact stencil. These advantageous features of CIP are, however, diluted by the following two shortcomings:
(1) CIP contains a defect in the utilization of the grid data, which makes the method suitable only for simulations
with a tight CFL restriction; and (2) CIP does not guarantee unconditional stability. There have been several
attempts to fix these problems in CIP, but they have been only partially successful. The solutions that fixed both
problems ended up introducing other undesirable features, namely increased computation time and/or reduced
accuracy. This paper proposes a novel modification of the original CIP method that fixes all of the above problems
without increasing the computational load or reducing the accuracy. Both quantitative and visual experiments
were performed to test the performance of the new CIP in comparison to existing fluid solvers. The results show
that the proposed method brings significant improvements in both accuracy and speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

The visual quality of a fluid simulation heavily depends on
the accuracy of the advection solver. Since the graphics com-
munity became aware of this problem, developing an accu-
rate advection solver has been a primary concern. Attempts
have been made to develop high-order advection solvers in
the Eulerian framework. These efforts have yielded meth-
ods such as the monotonic cubic spline method [FSJ01],
the constrained interpolation profile (CIP) method [TFK∗03,
SSK05], and the back and forth error compensation and
correction (BFECC) method [KLLR05, KLLR07]. Hybrid
methods, which combine the Lagrangian and Eulerian
frameworks, have also been explored. Examples of these
techniques are the particle level set method [EMF02],
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the vortex particle method [SRF05], and derivative parti-
cles [SKK07]. What this paper develops is the first kind; It
develops a fast, stable, but accurate advection solver in the
Eulerian framework. To achieve improved performance, we
modified the CIP scheme. Although the proposed method
is a purely Eulerian advection solver, it can freely combine
with the Lagrangian framework. In fact, it can be used to
bring improvements to the above hybrid methods.

Efforts to develop high-order (Eulerian) advection
schemes have been led by the computational fluid dynam-
ics (CFD) community. Essentially non-oscillatory (ENO)
and weighted ENO (WENO) [OF02] methods are widely
used high-order methods in CFD. Another advection scheme
based on monotonic cubic-spline polynomials has also
been proposed in the graphics field [FSJ01]. In both the
ENO/WENO and cubic-spline polynomial approaches, how-
ever, the computations are performed over wide stencils,
which becomes problematic when the simulation domain
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Linear BFECC USCIPMCIP

Figure 1: In this smoke simulation, the linear semi-Lagrangian model took 5.8, BFECC with artificial diffusion [KLL∗07] took
29.6, MCIP took 26.92, and our new CIP model (USCIP) took 11.81 seconds per frame to compute the advection. For the whole
simulation, the linear model took 41.36, BFECC took 65.48, MCIP took 62.28, and USCIP took 45.39 seconds per frame. The
grid resolution was 135×90×90.

contains complex inner boundaries. Moreover, it is non-
trivial to employ adaptive grids when wide stencils are used.

Meanwhile, Yabe and Aoki [YA91, YIW∗91] invented
a third-order advection scheme, the CIP method, which
works with a compact stencil. Unfortunately, this method
suffered from instabilities, prompting the development of a
modified method known as rational CIP (RCIP) [XYNI96a,
XYNI96b]; however, although RCIP is more stable than CIP,
it is still not unconditionally stable. Song et al. [SSK05]
proposed an unconditionally stable variation of CIP, the
monotonic CIP method (MCIP). For the semi-Lagrangian
backtracking, they used a dimensional splitting approach
based on a tri-cubic interpolation composed of a number of
1D MCIP interpolations. Although MCIP is unconditionally
stable, the dimensional splitting significantly increases the
computational load, and causes additional numerical dissi-
pation compared to unsplit CIPs.

This paper develops a stable CIP method that does not em-
ploy dimensional splitting. The new method, which is based
on the semi-Lagrangian method, is unconditionally stable. It
runs faster than MCIP and BFECC, but produces results that
are clearly less diffusive. (See Figures 1 and 2.)

2. Related Work

In the computer graphics field, fluid animation technique
based on full 3D Navier–Stokes equations was first intro-
duced by Foster and Metaxas [FM96]. Subsequently, Stam
[Sta99] introduced an unconditionally stable fluid solver
based on the semi-Lagrangian advection method.

The first-order semi-Lagrangian advection method uses
linear interpolation, which is a source of numerical diffu-
sion. Several high-order Eulerian advection schemes have
been proposed to address this problem. Fedkiw et al. [FSJ01]
introduced the use of monotonic cubic spline interpola-
tion for the semi-Lagrangian process. Song et al. [SSK05]
introduced the monotonic CIP method, and subsequently
extended it to the octree data structure [SKK07]. Kim et
al. [KLLR05, KLLR07] introduced the BFECC method,
which has recently been analyzed by Selle et al. [SFK∗07].

To overcome the fundamental drawback associated with
grid-based interpolation, several hybrid approaches have
proposed that combine the Eulerian and Lagrangian frame-
works. Improving the accuracy of surface tracking is another
important issue in fluid simulation. To achieve accurate sur-
face tracking in liquid animation, Enright et al. [EMF02]
developed the particle level set method, and Mihalef et
al. [MMS07] proposed the marker level set method. Velocity
also suffers from numerical diffusion, and harms visual re-
alism. For simulating fluids with swirls, Selle et al. [SRF05]
embedded vortex particles to the fluid solver. Zhu and Brid-
son [ZB05] introduced the FLIP method to the graphics
community, which performs the advection part in terms
of massless particles. Song et al. [SKK07] developed the
derivative particle method, which is a combination of the
FLIP and CIP methods.

3. Original CIP Method

The method developed in this paper is devised so as to fix the
problems associated with the original CIP and MCIP meth-
ods. Hence, we describe the original CIP and MCIP in Sec-
tions 3 and 4, respectively, before presenting our new CIP
method in Section 5

The original version of CIP was introduced in 1991 by
Yabe and Aoki [YA91, YIW∗91]. The key idea of this
method is to advect not only the physical quantities but also
their derivatives. In general, the advection equation can be
written as

∂ϕ
∂t

+u
∂ϕ
∂x

= 0, (1)

where ϕ is the physical quantity that is being advected. In
1D, differentiating equation (1) with respect to the spatial
variable x gives

∂ϕx

∂t
+u

∂ϕx

∂x
= −ux

∂ϕ
∂x

, (2)

which can be used to predict the evolution of ϕx over time.
For solving equation (1), the CIP method uses the semi-
Lagrangian method: for simplicity, we assume the grid size
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Figure 2: Zalesak’s disk experiment: After one revolution on a 100×100 grid cell computational domain.

(xi+1 − xi) is 1. If p is the back-tracked position, then its ϕ
value is approximated with the cubic-spline interpolation

Φ(p) = [(C0 p+C1)p+ϕxi ]p+ϕi, (3)

where the coefficients C0 and C1 are given in terms of the ϕ
and ϕx values of grid points

C0 = ϕxi +ϕxi+1 −2(ϕi+1 −ϕi) (4)

C1 = 3(ϕi+1 −ϕi)−2ϕxi −ϕxi+1 . (5)

00 10
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Upwind direction (y)

Upwind direction (x)

Farthest cell corner

Starting point of the

semi-Lagrangian

11

(x,y)

Figure 3: Indexing of 2D CIP interpolation.

Extending this method to two and three dimensions, how-
ever, turns out not to be straightforward. To extend CIP to
higher dimensions, Yabe and Aoki introduced 2D and 3D
polynomials [YIW∗91]. For 2D, they use the polynomial

Φ(x,y) = ∑
0≤i+ j≤3

Ci jx
iy j. (6)

The ten coefficients of the above polynomial are determined
from four known physical values and six derivative values
at the cell corners. It is critical to note where they took the
derivative values. They took x and y directional derivatives
from only three cell corners, specifically the two upwind
directions and the starting point of the semi-Lagrangian,
as shown in Figure 3. Since the construction of the above
polynomial does not utilize the derivative information at the
farthest cell corner, the method is accurate only when the
back-tracked point falls near the starting point of the semi-
Lagrangian advection. This can be problematic for simula-
tions with large CFL numbers. Another critical problem of
the original CIP methods is that they can generate instabili-
ties. Even in the case of 1D CIP interpolation, stability is not
guaranteed. The Hermite interpolating polynomial, which

is defined with the values and their derivatives at the end
points, can easily generate overshooting profiles.

4. Monotonic CIP Method

Song et al. [SSK05] proposed a variation of the original CIP
method, namely the monotonic CIP (MCIP). To ensure sta-
bility, MCIP uses a modified version of the grid point deriva-
tives if the profiles of equation (3) can potentially have over-
shoots. Song et al. derived the sufficient condition for the
grid point derivatives that guarantees a monotonic profile.
The MCIP method is unconditionally stable. However, the
derivative clamping in MCIP can over-stabilize the situation;
in cases where the original CIP does not generate instabili-
ties, MCIP tends to give slightly more diffusive simulation
results compared to the original CIP method.

Song et al. [SSK05] extended the 1D MCIP method to 2D
and 3D. They obtained the higher dimensional MCIPs by
cascading the 1D MCIP solver. This dimensional splitting is
described in detail in [SSK05]. Since the 2D/3D MCIPs are
composed of monotonic interpolations, they are also uncon-
ditionally stable. With the dissipation-suppressing nature in-
herited from the original CIP and the unconditional stability
achieved by Song et al., MCIP could perform 2D simulations
of water in real-time.

Although the dimensional splitting brought stability to the
MCIP method, it has two major drawbacks. Firstly, the di-
mensional splitting of MCIP leads to a higher computational
load compared to unsplit CIP. In 2D, six cubic-spline inter-
polations must be performed for a single semi-Lagrangian
access [SSK05]: two along the x-axis for ϕ and ϕx, two
along the x-axis for ϕy and ϕxy, one along the y-axis for
ϕ and ϕy, and one along the y-axis for ϕx and ϕxy. In 3D,
27 cubic-spline interpolations are required for a single ac-
cess (since the second and third derivatives must be inter-
polated as well). Also, MCIP uses a large number of condi-
tion statements (if-else) to keep a monotonic profile. Song et
al. [SKK07] have shown that, in the 3D octree data-structure,
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the computation time for MCIP is 60% higher than that of
linear advection†.

The second drawback associated with the dimensional
splitting of MCIP is numerical error. The results produced
using the split-interpolation are not identical to those pro-
duced using the unsplit-interpolation; the results of the split-
interpolation depend on the axis direction. Moreover, Xiao
et al. [XYNI96a] have shown that dimensional-splitting ex-
hibits numerical diffusion when simulating shear motion.
Also, we note that the split-CIP-interpolation requires sec-
ond and third derivatives that must be calculated by cen-
tral differencing. This represents another source of numer-
ical diffusion, and calls for a non-negligible amount of extra
computation. More importantly, the use of central differenc-
ing harms the compactness of the CIP method.

From the above, it is apparent that unsplit-CIP-
interpolation is more attractive than CIP interpolation
with dimensional splitting. However, although unsplit-CIP-
interpolation has existed since the birth of the CIP method,
a stable unsplit-CIP-interpolation that can be used for any
(unrestricted) semi-Lagrangian advection has yet to be de-
veloped.

5. Unsplit Semi-Lagrangian CIP Method

This paper develops an unsplit semi-Lagrangian CIP (US-
CIP) method, where the words ‘semi-Lagrangian’ in the
name bears the stability. Our proposed technique should be
applicable to simulations without any CFL restrictions. To
develop USCIP, we go back to Yabe and Aoki’s original 2D
and 3D polynomials and make necessary modifications. A
fundamental deviation we make from the original CIP is that
we utilize all the derivative information for each cell. In 2D,
a cell has 12 known values: ϕ, ϕx, and ϕy at the four corners.
Another deviation from the original CIP is that we include
two additional terms, x3y and xy3, in the polynomial; specif-
ically, the 2D polynomial we use for USCIP is

Φ(x,y) = ∑
0≤i+ j≤3

Ci jx
iy j +C31x3y+C13xy3. (7)

We included the two extra terms because of the mismatch
between the number of known values (12) and the number
of terms (10) in the third-order 2D polynomial. There are
two options for overcoming this mismatch arising from the
use of all the known values: to formulate the coefficient-
finding task as an over-constrained problem and find the
least-squares solution; or to insert extra terms to match the
number of known values. We chose the latter option in this
paper. We did not follow the first option because when inter-
polation is performed with the least-squares solution, (1) the

† Since most discussions in this paper are made in the context
of semi-Lagrangian advection, we will refer to first-order semi-
Lagrangian advection simply as linear advection.

interpolated result at the corner will not be identical to the
known value at that corner, and (2) it will not be C0 contin-
uous across the cell boundaries.

The forms of the two added terms were decided according
to the following three principles: 1) the new terms should not
create any asymmetry, i.e., if xmyn is added, then xnym must
also be added; 2) the new terms should contain both x and
y, since such terms can reflect off-axis motion such as ro-
tation and shear better than decoupled terms; and 3) among
the terms that satisfy the first and second principles, the low-
est order terms should be chosen to prevent any unnecessary
wiggles. The terms that pass all three criteria are x3y and xy3.

The coefficients of the polynomial can be computed
in a manner similar to that described by Yabe and
Aoki [YIW∗91]. Let ϕ00, ϕ10, ϕ01, and ϕ11 be the phys-
ical quantities at each cell corner. Let ϕx = ∂ϕ/∂x, and
ϕy = ∂ϕ/∂y. Let ϕx00, ϕx10, ϕx01, ϕx11, ϕy00, ϕy10, ϕy01, and
ϕy11 be the derivative values at each cell corner. Then, the
coefficients C00 . . .C31 are uniquely given by,

C00 = ϕ00

C10 = ϕx00

C01 = ϕy00

C20 = 3(ϕ10 −ϕ00)−ϕx10 −2ϕx00

C02 = 3(ϕ01 −ϕ00)−ϕy01 −2ϕy00

C30 = −2(ϕ10 −ϕ00)+ϕx10 +ϕx00

C03 = −2(ϕ01 −ϕ00)+ϕy01 +ϕy00

C21 = 3ϕ11 −2ϕx01 −ϕx11

− 3(C00 +C01 +C02 +C03)−C20

C31 = −2ϕ11 +ϕx01 +ϕx11

+ 2(C00 +C01 +C02 +C03)−C30

C12 = 3ϕ11 −2ϕy10 −ϕy11

− 3(C30 +C20 +C10 +C00)−C02

C13 = −2ϕ11 +ϕy10 +ϕy11

+ 2(C00 +C10 +C20 +C30)−C03

C11 = ϕx01 −C13 −C12 −C10. (8)

For the 3D case, the coefficients are presented in Ap-
pendix A.

Original CIP USCIP

Figure 4: Interpolated profile of the original CIP and US-
CIP in 2D. Red arrows correspond to ϕx.

Figure 4 visualizes the effect of utilizing the derivative in-
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Figure 5: Simulation of rising smoke passing through obstacles. The grid resolution was 160×220×80.

Figure 6: Simulation of a bunny-shaped water chunk dropping onto still water. The grid resolution was 1503.

formation at the farthest cell corner (the back right corner in
the figure). At every corner, ϕy = 0. At the back right corner,
ϕ = 1, ϕx = 0, and at the back left corner, ϕ = 0, ϕx = 5,
while ϕ = ϕx = 0 at the remaining corners. We can see that
the original CIP forms a steep slope around the farthest cor-
ner, whereas USCIP reflects all the derivative information in
the profile.

Although utilization of the derivative information at the
farthest cell corner helps improve the stability, it does not
guarantee that the interpolated value will always be bounded
by the grid point values. Thus, we need to make a provision
to keep the USCIP stable. One option would be to follow the
approach taken in MCIP; that is, we could find the sufficient
condition for the derivatives which makes the profile mono-
tonic for an arbitrary direction. However, we do not take
this approach for the following reasons: (1) finding the suf-
ficient condition becomes a 24-degree-of-freedom optimiza-
tion problem in 3D since we have three derivatives for each
of the eight cell corners, and (2) clamping the derivatives
into the sufficient condition might lead to over-stabilization
in some cases that are not overshoots.

In USCIP, we perform a very simple clamping: when
the interpolated result is larger/smaller than the maxi-
mum/minimum of the cell node values, we replace the result
with the maximum/minimum value. This delayed clamping
procedure, which is similar to the one used in the uncon-
ditionally stable MacCormack scheme [SFK∗07], guaran-
tees unconditional stability without introducing unnecessary
over-stabilization.

USCIP works on compact stencils since it does not need

to calculate high-order derivatives. This is an important im-
provement over MCIP. Obviating the calculation of high-
order derivatives also reduces the computation time.

Although constructing and interpolating with a high-order
unsplit polynomial is more complicated than working with
1D split polynomials, since the split-CIP involves multiple
interpolations, overall USCIP requires fewer operations than
MCIP. According to our implementation, MCIP performs
693 (21×27+126) operations for a 3D interpolation; that is,
27 1D interpolations must be performed for a 3D tri-cubic
interpolation, and each 1D interpolation involves 21 opera-
tions. Additionally, MCIP must compute second and third
derivatives, which involves 126 operations. By contrast, US-
CIP performs 296 operations for a 3D interpolation, which
corresponds to only 43% of the total operation count needed
for MCIP.

6. Experimental Results

The simulations reported in this section were performed on
a PowerMac G5 2.5 GHz with 5.5 GB of memory. For the
simulations on Zalesak’s disk and smoke, the linear, BFECC,
and MCIP advections were also performed for compari-
son. BFECC and MCIP were implemented according to
[KLL∗07] and [SSK05], respectively. In every simulation, a
uniform grid was used, and the CFL number was restricted to
two. No vortex reinforcement method such as that described
in [FSJ01] or [SRF05] was used in any of the experiments.
Rendering was performed using our in-house ray-tracer. The
pseudo-code for our 2D fluid solver is described in Table 2.
Although the pseudo-code does not include the density or
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Figure 7: Simulation of a dam breaking with 200×150×100 grid resolution.

level set implementation, it is straightforward to extend it to
smoke or liquid simulator.

6.1. Rigid Body Rotation of Zalesak’s Disk

We performed Zalesak’s disk experiment [Zal79] on a
100×100 resolution grid. The contour of the disk was
tracked via the level set field. This experiment is not de-
signed to measure the interface tracking capability. (In-
terface tracking can be easily improved by applying hy-
brid techniques such as those in [ELF03], [SKK07] or
[MMS07].) Rather, the experiment focuses on measuring
the anti-dissipation capabilities of purely Eulerian advection
methods. For the same reason, we did not perform reinitial-
ization of the level set, as in [SFK∗07].

We rotated the disk using four advection schemes: linear
(first-order semi-Lagrangian), BFECC, MCIP, and USCIP.
The results, shown in Figure 2, indicate that USCIP produces
the most accurate result and that, as explained in Sections 4
and 5, USCIP produces a less diffusive result than MCIP.

6.2. Smoke Injected Toward a Statue

In this experiment, smoke is injected toward a statue and
vortices are generated behind the statue. As in the previ-
ous experiment, we ran the simulation with four advection
schemes and measured the computation times. The grid res-
olution was 135×90×90. Figure 1 shows snapshots taken at
the same simulation time in the computations using the four
advection schemes. Table 1 summarizes the average compu-
tation time for simulating a single frame (not for simulating
a single time step). The figure and table show that, among
the three high-order schemes, USCIP runs more than twice
as fast as BFECC and MCIP but produces a result that is
clearly less diffusive.

We note that USCIP ran faster than BFECC. In fact, US-
CIP involves more operations than BFECC in a single loop,
but BFECC performs more loops than USCIP. Thus USCIP
takes advantage of the cache hit. Also, BFECC has to per-
form an artificially designed diffusion process for suppress-
ing noise [KLL∗07], which adds more operations. Since US-
CIP has to store spatial derivatives, it uses three times more
memory for each advection. This is not a problem, however,
given that it is now possible to mount gigabytes of memo-
ries in PCs. Even with uniform grids, USCIP could simulate
a fairly complex fluid scene on a single PC.

6.3. Rising Smoke Passing Through Obstacles

Initially the smoke forms the letters of the word ‘SMOKE’
in 3D. As the smoke rises due to the buoyancy force, it hits
obstacles, leading to the generation of many complex swirls
inside the domain. The smoke was simulated with USCIP
on an 160×220×80 grid. A series of snapshots is shown in
Figure 5. This experiment demonstrates that USCIP can gen-
erate realistic swirling of smoke under complicated internal
boundary conditions without the assistance of vortex rein-
forcement methods.

6.4. Dropping a Bunny-shaped Water onto Still Water

This experiment and the next one simulate the motion of
water, and show that USCIP can be used in hybrid meth-
ods. In these two experiments, we employed the particle
level set method [EMF02] for tracking the water surfaces.
In the current experiment, a bunny-shaped water chunk was
dropped onto still water. The grid resolution was 1503. Fig-
ure 6 shows a series of snapshots as the bunny strikes the
water surface. USCIP successfully generated complicated
small-scale features such as droplets, thin water sheets, and
small waves.
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Linear BFECC MCIP USCIP
Computation Time for Advection Only (sec/frame) 5.80 29.60 26.92 11.81
Computation Time for Total Simulation (sec/frame) 41.36 65.48 62.28 45.39

Table 1: Computation time for the smoke simulation shown in Figure 1

6.5. Colliding Water after Dam Breaking

We next used USCIP to simulate a mid-scale dam break-
ing. The grid resolution was 200×150×100. Two columns
of water, each with dimensions 0.6m×0.8m×0.6m, were re-
leased to make a violent collision. In this situation, advec-
tion is the dominant part in the fluid simulation. As shown
in Figure 7, after the collision of two columns of water, thin
and tall water sheets were developing and then lost their mo-
mentum near the ceiling. After that, the sheets were falling
in shapes of many tiny droplets due to the gravity. This ex-
periment indicates that USCIP can reproduce the detailed
movements of fast fluids.

6.6. Vorticity Preservation Test

Although our method is purely Eulerian, we compared US-
CIP with FLIP [ZB05], which is a particle-grid hybrid
method. We initially set the velocities of a 1m×1m domain
to the single vortex field which is defined by the stream func-
tion

ψ =
1
π

sin2(πx)sin2(πy). (9)

For FLIP, we seeded nine particles for each cell of 100×100
grids. We used Zhu and Bridson’s 2D FLIP solver ‡ for the
FLIP simulation. As shown in Figure 8, the result generated
with FLIP shows noisy curl field. Such a problem is not vis-
ible in the result generated with USCIP.

7. Conclusion

In this paper, we presented a new semi-Lagrangian CIP
method which is stable, fast, and produces accurate results.
By noting the problems associated with the original CIP and
MCIP methods, we concluded that a new polynomial con-
taining two additional fourth-order terms could be used for
the third-order interpolation. By judiciously choosing the
newly introduced terms, the proposed advection technique
could reflect all the derivative information stored at the grid
points without producing any noticeable artifacts. The pro-
posed technique ran more than twice as fast as BFECC or
MCIP but produced results that were clearly less diffusive.
Since USCIP works at a fundamental level, it can be applied
to existing advanced fluid simulators to enhance their speed,
stability, and accuracy.

‡ http://www.cs.ubc.ca/~rbridson

advance_single_time_step () {
// Non-advection part for u(u,v) (see [Sta99] for the details).
u∗ ⇐ add_force / diffuse / project ( un )

// Compute RHS of the equation (2) for u(u,v).
∇u∗ ⇐ update_derivatives ( un, ∇un, u∗, un )
∇v∗ ⇐ update_derivatives ( vn, ∇vn, v∗, un )

// Advection part for u(u,v).
// Compute equation (1) and LHS of the equation (2).
un+1, ∇un+1 ⇐ advect_velocity_USCIP ( u∗, ∇u∗ )

}

// Update derivatives for f (see [YIW∗91] for more details).
update_derivatives ( f n, ∇ f n, f ∗, un ) {

for each cell {
f ∗xi, j

= f n
xi, j

+ 1
2∆x ( f ∗i+1, j − f ∗i−1, j − f n

i+1, j + f n
i−1, j)

− ∆t
∆x [ f n

xi, j
(un

i+1/2, j −un
i−1/2, j)+ f n

yi, j
(vn

i+1/2, j − vn
i−1/2, j)]

f ∗yi, j
= f n

yi, j
+ 1

2∆y ( f ∗i, j+1 − f ∗i, j−1 − f n
i, j+1 + f n

i, j−1)
− ∆t

∆y [ f n
xi, j

(un
i, j+1/2 −un

i, j−1/2)+ f n
yi, j

(vn
i, j+1/2 − vn

i, j−1/2)]
}
return ∇ f ∗

}

Table 2: Pseudo-code for the 2D USCIP fluid solver.
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Appendix A: The Coefficients of 3D USCIP

The polynomial used for the 3D USCIP advection is

Φ(x,y, z) = ∑
0≤i+ j+k≤3

Ci jkxiy jzk

+ C310x3y +C301xz3 +C130xy3

+ C031y3z +C103z3x +C013z3y

+ C211x2yx +C121xy2z +C112xyz2

+ C311x3yx +C131xy3z +C113xyz3.

Known values are ϕi jk , ϕxi jk , ϕyi jk , ϕzi jk , where i, j, k are 0 or 1. Let
∆x jk = ϕx1 jk − ϕx0 jk , ∆yik = ϕyi1k − ϕyi0k, and ∆zi j = ϕzi j1 − ϕzi j0.
Then, the coefficients are given by

C000 = ϕ000, C100 = ϕx000, C010 = ϕy000, C001 = ϕz000

C110 = ϕx010 −ϕx000 − (∆y10 −∆y00)+ (ϕy100 −ϕy000)

C011 = ϕy001 −ϕy000 − (∆z01 −∆z00)+ (ϕz010 −ϕz000)

C101 = ϕz100 −ϕz000 − (∆x01 −∆x00)+ (ϕx001 −ϕx000)

C200 = 3∆x00 −ϕx100 −2ϕx000

C020 = 3∆y00 −ϕy010 −2ϕy000

C002 = 3∆z00 −ϕz001 −2ϕz000

C111 = (ϕx011 −ϕx010 −ϕx001 +ϕx000)

+ (ϕy101 −ϕy100 −ϕy001 + ϕy000)

+ (ϕz110 −ϕz100 −ϕz010 +ϕz000)−2(ϕ111 −A)

C210 = 3(∆x10 −∆x00)−2(ϕx010 −ϕx000 −ϕx110 + ϕx100)

C201 = 3(∆x01 −∆x00)−2(ϕx001 −ϕx000 −ϕx101 + ϕx100)

C120 = 3(∆y10 −∆y00)−2(ϕy100 −ϕy000 −ϕy110 + ϕy010)

C021 = 3(∆y01 −∆y00)−2(ϕy001 −ϕy000 −ϕy011 + ϕy010)

C102 = 3(∆z10 −∆z00)−2(ϕz100 −ϕz000 −ϕz101 +ϕz001)

C012 = 3(∆z01 −∆z00)−2(ϕz010 −ϕz000 −ϕz011 +ϕz001)

C300 = ϕx100 + ϕx000 −2∆x00

C030 = ϕy010 + ϕy000 −2∆y00

C003 = ϕz001 + ϕz000 −2∆z00

C310 = ϕx110 −ϕx100 + ϕx010 −ϕx000 −2(∆x10 −∆x00)

C301 = ϕx101 −ϕx100 + ϕx001 −ϕx000 −2(∆x01 −∆x00)

C130 = ϕy110 −ϕy010 + ϕy100 −ϕy000 −2(∆y10 −∆y00)

C031 = ϕy011 −ϕy010 + ϕy001 −ϕy000 −2(∆y01 −∆y00)

C103 = ϕz101 −ϕz000 + ϕz100 −ϕz000 −2(∆z10 −∆z00)

C013 = ϕz011 −ϕz000 + ϕz010 −ϕz000 −2(∆z01 −∆z00)

C211 = 3(ϕ111 −A)− (ϕx111 −ϕx110 −ϕx101 + ϕx100)

− 2(ϕx011 −ϕx010 −ϕx001 + ϕx000)

C121 = 3(ϕ111 −A)− (ϕy111 −ϕy110 −ϕy011 + ϕy010)

− 2(ϕy101 −ϕy100 −ϕy001 + ϕy000)

C112 = 3(ϕ111 −A)− (ϕz111 −ϕz101 −ϕz011 + ϕz001)

− 2(ϕz110 −ϕz100 −ϕz010 + ϕz000)

C311 = (ϕx111 −ϕx110 −ϕx101 + ϕx100)

+ (ϕx011 −ϕx010 −ϕx001 + ϕx000)−2(ϕ111 −A)

C131 = (ϕy111 −ϕy110 −ϕy011 + ϕy010)

+ (ϕy101 −ϕy100 −ϕy001 + ϕy000)−2(ϕ111 −A)

C113 = (ϕz111 −ϕz101 −ϕz011 + ϕz001)

+ (ϕz110 −ϕz100 −ϕz010 + ϕz000)−2(ϕ111 −A)

A = ϕ100 + ϕy100 +ϕz100 +C011 +C020 +C002 +C120 +C021

+ C102 +C012 +C030 +C003 +C130 +C031 +C103 +C013.

c⃝ 2009 The Author(s)
Journal compilation c⃝ 2009 The Eurographics Association and Blackwell Publishing Ltd.


