Near-exhaustive Precomputation of Secondary Cloth Effects

Doyub Kim^{1,3}, Woojong Koh², Rahul Narain², Kayvon Fatahalian¹, Adrien Treuille¹, and James F. O'Brien²

¹Carnegie Mellon University, ²UC Berkeley, ³Microsoft

Real-time Cloth Animation Made Possible by Near-exhaustive Precomputation

29,654 vertices cloth mesh4,550 CPU-hours of precomputation66 MB run-time footprint

Data-driven Simulation

Run low-res simulation and add detail

Wang et al. 2010, Kavan et al. 2010, Feng et al. 2010 igodot

Model reduction

Treuille et al. 2006, Wicke et al. 2009

Tabulate the dynamics

James and Fatahalian 2003

Curse of dimensionality

- System under very controlled settings
- Low resolution / limited quality

Wang et al. 2010

Treuille et al. 2006

James and Fatahalian 2003

Leverage modern scale computing system to solve really hard problems Computer vision, speech recognition, machine translation, etc. May not be possible to have everything, but possible to have almost important data

Halevy and Norvig, "The Unreasonable Effectness of Data", 2009

Goals

High-quality cloth animation on a human character

As good as any off-line simulator

High-performance real-time implementation

Real-time execution on resource-constrained devices

Approach

- Leverage massive-scale precomputation to explore space of cloth dynamics
- Compactly represent the result of precomputation in a motion graph

Representing Cloth Dynamics

Input: Traditional Motion Graph

12 motion capture clips 3,115 frames Source from HDM05

Primary Motion Graph

Character Skeleton Pose State

Cloth state (vertex position and velocity)

Dead-end (leaf node)

Unrolled **Tree View**

Back-links Find the closest neighbor node in same primary state. If found, merge by adding back-link.

No Back-link Blending

No Back-link Blending

With Blending

With Blending + Error Visualization

Back-links Find the closest neighbor node in same primary state. If found, merge by adding back-link.

Continually run additional

simulations to remove largest errors in secondary graph

A B

Simulation Work Queue the merge error.

: Sim. work to extend from node A A

Sort the order of the dead-ends based on

С

Simulation Work Queue the merge error. extend the graph.

Sort the order of the dead-ends based on

Then, pop-out the highest-error node and

Simulation Work Queue the merge error. extend the graph.

Sort the order of the dead-ends based on

Then, pop-out the highest-error node and

Quantifying Transition Error

Error Function Max vertex position + time-scaled velocity difference

Geometric + Custom Error Metric

Unrolled Tree View

Geometric + Custom Error Metric

Classification We can categorize the states with arbitrary metric, such as hood's state. For example, E is merging two different state of the hood (up and down).

225 CPU-hours 4,906 Frames

1,653 CPU-hours 36,073 Frames

4,554 CPU-hours 99,352 Frames

Geometric + Custom Error Metric

EDC

Classification We can categorize the states with arbitrary metric, such as hood's state. For example, E is merging two different state of the hood (up and down).

Colored Edges

Color-coded character motion type (e.g. run, jump, cartwheel, etc)

Gray Edges

Back-links

Secondary Graph Compression

Out-of-core SVD Compression

33 GB 143 MB

66 MB

200 Bases (66 MB)

Reference (33,614 MB)

Live Demo

Summary

Secondary Graph Generation

100k frames over 4,500 CPU-hours

Cloth Simulator

Error Metric

Compression

66 MB

Interactive Playback 70 FPS on my laptop

Future Work

Integration with real-time simulator Generalization to other phenomena

70 FPS on my laptop

Interactive Playback

Potential for Precomputing the Behavior of **Complex Physical Systems**

Massive-scale computation Intelligent exploration of complex phase portrait

Thanks to...

Alexander Roshetov and Alexi Soupikov

Cloth simulator optimization

Juan Miguel de Joya

Cloth and character modeling

Intel Science and Technology Center for Visual Computing

• Intel research cluster

NSF Grants, UC Lab Fees Research Program Grant Samsung, Google, Qualcomm, Adobe, Pixar, and the Okawa Foundation

Thank You

